A mathematical model of rat ascending Henle limb. II. Epithelial function.

نویسندگان

  • Alan M Weinstein
  • Thomas A Krahn
چکیده

A mathematical model of ascending Henle limb (AHL) epithelium has been fashioned using kinetic representations of Na+-K+-2Cl- cotransporter (NKCC2), KCC4, and type 3 Na+/H+ exchanger (NHE3), with transporter densities selected to yield the reabsorptive Na+ flux expected for rat tubules in vivo. Of necessity, this model predicts fluxes that are higher than those measured in vitro. The kinetics of the NKCC and KCC are such that Na+ reabsorption by the model tubule is responsive to variation in luminal NaCl concentration over the range of 30 to 130 mM, with only minor changes in cell volume. Peritubular KCC accounts for about half the reabsorptive Cl- flux, with the remainder via peritubular Cl- channels. Transcellular Na+ flux is turned off by increasing peritubular KCl, which produces increased cytosolic Cl- and thus inhibits NKCC2 transport. In the presence of physiological concentrations of ammonia, there is a large acid challenge to the cell, due primarily to NH4+ entry via NKCC2, with diffusive NH3 exit to both lumen and peritubular solutions. When NHE3 density is adjusted to compensate this acid challenge, the model predicts luminal membrane proton secretion that is greater than the HCO3(-)-reabsorptive fluxes measured in vitro. The model also predicts luminal membrane ammonia cycling, with uptake via NKCC2 or K+ channel, and secretion either as NH4+ by NHE3 or as diffusive NH3 flux in parallel with a secreted proton. If such luminal ammonia cycling occurs in vivo, it could act in concert with luminal K+ cycling to facilitate AHL Na+ reabsorption via NKCC2. With physiological ammonia, peritubular KCl also blunts NHE3 activity by inhibiting NH4+ uptake on the Na-K-ATPase, and alkalinizing the cell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A mathematical model of rat proximal tubule and loop of Henle.

Proximal tubule and loop of Henle function are coupled, with proximal transport determining loop fluid composition, and loop transport modulating glomerular filtration via tubuloglomerular feedback (TGF). To examine this interaction, we begin with published models of the superficial rat proximal convoluted tubule (PCT; including flow-dependent transport in a compliant tubule), and the rat thick...

متن کامل

Urine-concentrating mechanism in the inner medulla: function of the thin limbs of the loops of Henle.

The ability of mammals to produce urine hyperosmotic to plasma requires the generation of a gradient of increasing osmolality along the medulla from the corticomedullary junction to the papilla tip. Countercurrent multiplication apparently establishes this gradient in the outer medulla, where there is substantial transepithelial reabsorption of NaCl from the water-impermeable thick ascending li...

متن کامل

A mathematical model of rat ascending Henle limb. III. Tubular function.

K+ plays a catalytic role in AHL Na+ reabsorption via Na+-K+-2Cl- cotransporter (NKCC2), recycling across luminal K+ channels, so that luminal K+ is not depleted. Based on models of the ascending Henle limb (AHL) epithelium, it has been hypothesized that NH4+ may also catalyze luminal Na+ uptake. This hypothesis requires that luminal NH4+ not be depleted, implying replenishment via either direc...

متن کامل

Two modes for concentrating urine in rat inner medulla.

We used a mathematical model of the urine concentrating mechanism of rat inner medulla (IM) to investigate the implications of experimental studies in which immunohistochemical methods were combined with three-dimensional computerized reconstruction of renal tubules. The mathematical model represents a distribution of loops of Henle with loop bends at all levels of the IM, and the vasculature i...

متن کامل

Countercurrent multiplication may not explain the axial osmolality gradient in the outer medulla of the rat kidney.

It has become widely accepted that the osmolality gradient along the corticomedullary axis of the mammalian outer medulla is generated and sustained by a process of countercurrent multiplication: active NaCl absorption from thick ascending limbs is coupled with the counterflow configuration of the descending and ascending limbs of the loops of Henle to generate an axial osmolality gradient alon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 298 3  شماره 

صفحات  -

تاریخ انتشار 2010